Impacts of COVID-19 Containment Policies on Air Pollution and Exposure Disparities in Canada

Tsegaye Ginbo ¹ Liyuan Xuan ² Patrick Lloyd-Smith ³ Wiktor Adamowicz ²

¹The World Bank

²University of Alberta

³University of Saskatchewan

Dec 5, 2024

Source: John Ulan, The Quad

COVID Policy in Canada in 2020

- A combination of restrictions with different intensities or stringencies to reduce the spread of COVID-19 diseases, such as:
 - school and workplace closures
 - restrictions on gathering
 - stay-at-home orders
- Both positive and negative unintended consequences were found on society and the environment

Source: Sophie-Claire Hoeller, Business Insider

- "Natural experiment" of policy impacts on air quality
- Co-benefits of air quality improvements associated with the policies
- The environmental impacts of changes in behaviours

• Estimate the effect of the stringency of Canadian COVID-19 policies on the concentration level of 8 major air pollutants in 2020

- $\mbox{PM}_{2.5},$ $\mbox{PM}_{10},$ $\mbox{O}_3,$ $\mbox{SO}_2,$ $\mbox{CO},$ $\mbox{NO}_X,$ \mbox{NO} and \mbox{NO}_2

- Find negative, significant and robust impact on most pollutants
- Detect disproportionate reduction in air pollution exposure among different socio-economic groups

- Data obtained from the National Air Pollution Surveillance (NAPS) program of Environment and Climate Change Canada (ECCC)
- Daily averages from hourly data of the 8 pollutants during 2015-2020
- \bullet The data is winsorized using 1% and 99% as thresholds

- Oxford University's COVID-19 Government Response Tracker (OxCGRT)
 - 4 policy indices calculated based on the value of 24 policy indicators
 - $-\,$ each indicator is assigned an ordinal value between 0 to 5 $\,$
 - $-\,$ indices aggregated into a value between 0 to 100 $\,$

- Follow OxCGRT procedures to construct the Stringency Index for stricter policies based on 7 indicators:
 - school closure, workplace closure, cancellation of public events, gathering restrictions, public transportation closure, stay-at-home order, and internal movement restrictions
 - $-\,$ daily and provincial index between March 16 and December 31, 2020

COVID-19 Policy Stringency Index (cont'd)

- Daily meteorological data during 2015-2020 from the Environment and Climate Change Canada (ECCC):
 - temperature and total precipitation
- 2016 Canadian Census data on socioeconomic backgrounds at the Dissemination Area (DA) level:
 - proportion of Indigenous population, senior age groups, low-income population, visible minorities population

Socioeconomic Data - Indigenous

ESNA 2025 Economic Outlook

COVID vs. Air Pollution

Socioeconomic Data - Low-Income

Socioeconomic Data - Visible Minorities

Socioeconomic Data - Senior Age

- Significant negative impacts of policy stringency on 7 pollutants (except O₃) during March 16 - December 31, 2020
 - 1% increase in the stringency of COVID-19 policies reduces $\mathsf{PM}_{2.5}$ by 0.74% in Canada
 - 3.83% for PM_{10}, 0.31% for SO_2, 0.05% for CO, 2.96% for NO_X, 3.12% for NO, 2.50% for NO_2
- $\bullet~O_3$ is formed from interactions between NO_X and VOCs
 - the level is highly dependent on the ratio between NO_X and VOCs, so small decreases in NO_X can even lead to increases in O_3
 - "Ozone weekend effect"

- Between March and May 2020, provinces in Canada implemented Stay-at-home (SAH) recommendations/requirements
- Estimate the same model, but for the SAH period
- The coefficients are generally larger in magnitude

- Heterogeneous effect across different socioeconomic groups:
 - Indigenous, seniors aged over 64, low-income, and visible minority
- Disproportionate (mixed) reduction in air pollution, except for the senior group
 - Indigenous: higher exposure to CO
 - low-income: higher exposure to PM_{2.5}, NO_X, NO and NO₂
 - $-\,$ visible minority: lower exposure to SO_2, CO, and PM_{10}
- Similar results during the SAH period, but include the senior group

- Air Quality Benefits Assessment Tool (AQBAT): an application developed by Health Canada, to estimate the human health impacts due to changes in the ambient air quality in Canada
- Occurrences of mortality/morbidity and symptoms potential, associated economic benefits/damages of changes in air quality

Air Quality Benefits Assessment Tool (cont'd)

Steps in Estimating Health Benefits

ESNA 2025 Economic Outlook

- 1% (10%) increase in the COVID-19 policy stringency in 2020 across Canada would lead to
 - 68 (815) fewer occurrences of mortality
 - \$597 million (\$7 billion) economic benefits
 - -~ 18 days of SAH requirement (instead of no requirement) =1% increase
- The valuation estimates the potential welfare impacts associated with reduced treatment costs and productivity losses, avoided pain and suffering, and the impacts of decreased mortality risk

- Provincial comparison of Saskatchewan and Manitoba
- Similar GDP, population, weather and terrain conditions
- Policy stringency is 63 for Saskatchewan and 67 for Manitoba
- If Saskatchewan had adopted the same policy stringency as Manitoba
 - 12 fewer occurrences of mortality
 - \$104 million total economic benefits, or \$115 per adult in Saskatchewan

- Using multi-pollutant air quality health indices (AQHIs)
 - similar negative impact of the COVID-19 policy stringency
- Using overall OxCGRT index
 - $-\,$ significant and the same signs as the coefficients in the primary results
- Tests and regressions to prove validity and reliability

- Estimate the effect of the stringency of Canadian COVID-19 policies on air pollution
- Find significant and negative impact on 7 pollutants (except O₃)
 - $-\,$ robust across various specifications and during SAH policy period
- Detect mixed results regarding the disproportionate reduction in air pollution exposure among socio-economic groups
- Use AQBAT to simulate potential economic benefits caused by the changes in the COVID-19 policy stringency

- Design of the policies requires careful evaluation of trade-offs associated with intended/unintended benefits and cost
- The consequences of such policy interventions can vary depending on various contexts (e.g. different socio-economics groups)
- To support environmental justice, underlying mechanisms that are driving the disparities in air pollution exposures need to be identified

Thank You!

Liyuan Xuan <u>lxuan@ualberta.ca</u>